kaldi.transform

Functions

apply_affine_transform Calls C++ function
compose_transforms Calls C++ function

Classes

AffineXformStats CLIF wrapper for ::kaldi::AffineXformStats
CompressedAffineXformStats CLIF wrapper for ::kaldi::CompressedAffineXformStats
RegressionTree CLIF wrapper for ::kaldi::RegressionTree
class kaldi.transform.AffineXformStats

CLIF wrapper for ::kaldi::AffineXformStats

G_

C++ ::std::vector< ::kaldi::SpMatrix<double> > AffineXformStats.G_

K_

C++ ::kaldi::Matrix<double> AffineXformStats.K_

add(other:AffineXformStats)

Calls C++ function void ::kaldi::AffineXformStats::Add(::kaldi::AffineXformStats)

beta_

C++ double AffineXformStats.beta_

copy_stats(other:AffineXformStats)

Calls C++ function void ::kaldi::AffineXformStats::CopyStats(::kaldi::AffineXformStats)

dim() → int

Calls C++ function int ::kaldi::AffineXformStats::Dim()

dim_

C++ ::int32 AffineXformStats.dim_

init(dim:int, num_gs:int)

Calls C++ function void ::kaldi::AffineXformStats::Init(int, int)

new(other:AffineXformStats) → AffineXformStats

Calls C++ function std::unique_ptr<::kaldi::AffineXformStats> ::kaldi::AffineXformStats::AffineXformStats(::kaldi::AffineXformStats)

read(is:istream, binary:bool, add:bool)

Calls C++ function void ::kaldi::AffineXformStats::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, bool)

set_zero()

Calls C++ function void ::kaldi::AffineXformStats::SetZero()

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::AffineXformStats::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.transform.CompressedAffineXformStats

CLIF wrapper for ::kaldi::CompressedAffineXformStats

copy_from_affine_xform_stats(input:AffineXformStats)

Calls C++ function void ::kaldi::CompressedAffineXformStats::CopyFromAffineXformStats(::kaldi::AffineXformStats)

copy_to_affine_xform_stats() → AffineXformStats

Calls C++ function void ::kaldi::CompressedAffineXformStats::CopyToAffineXformStats(::kaldi::AffineXformStats*)

new(input:AffineXformStats) → CompressedAffineXformStats

Calls C++ function std::unique_ptr<::kaldi::CompressedAffineXformStats> ::kaldi::CompressedAffineXformStats::CompressedAffineXformStats(::kaldi::AffineXformStats)

read(is:istream, binary:bool)

Calls C++ function void ::kaldi::CompressedAffineXformStats::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::CompressedAffineXformStats::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.transform.RegressionTree

CLIF wrapper for ::kaldi::RegressionTree

build_tree(state_occs:Vector, sil_indices:list<int>, am:AmDiagGmm, max_clusters:int)

Calls C++ function void ::kaldi::RegressionTree::BuildTree(::kaldi::Vector<float>, ::std::vector< ::int32>, ::kaldi::AmDiagGmm, int)

gather_stats(stats_in:list<AffineXformStats>, min_count:float) -> (success:bool, regclasses_out:list<int>, stats_out:list<AffineXformStats>)

Calls C++ function bool ::kaldi::RegressionTree::GatherStats(::std::vector< ::kaldi::AffineXformStats >, double, ::std::vector< ::int32>, ::std::vector< ::kaldi::AffineXformStats >)

gauss_to_base_class_id(pdf_id:int, gauss_id:int) → int

Calls C++ function int ::kaldi::RegressionTree::Gauss2BaseclassId(unsigned long, unsigned long)

get_base_class(bclass:int) → list<tuple<int, int>>

Calls C++ function ::std::vector< ::std::pair< ::int32, ::int32> > ::kaldi::RegressionTree::GetBaseclass(int)

num_base_classes() → int

Calls C++ function int ::kaldi::RegressionTree::NumBaseclasses()

read(is:istream, binary:bool, am:AmDiagGmm)

Calls C++ function void ::kaldi::RegressionTree::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, ::kaldi::AmDiagGmm)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::RegressionTree::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

kaldi.transform.apply_affine_transform(xform:MatrixBase, vec:VectorBase)

Calls C++ function void ::kaldi::ApplyAffineTransform(::kaldi::MatrixBase<float>, ::kaldi::VectorBase<float> *)

kaldi.transform.compose_transforms(a:Matrix, b:Matrix, b_is_affine:bool) -> (success:bool, c:Matrix)

Calls C++ function bool ::kaldi::ComposeTransforms(::kaldi::Matrix<float>, ::kaldi::Matrix<float>, bool, ::kaldi::Matrix<float>*)

kaldi.transform.cmvn

Classes

Cmvn Cepstral mean variance normalization (CMVN).
class kaldi.transform.cmvn.Cmvn(dim=None)[source]

Cepstral mean variance normalization (CMVN).

This class is used for accumulating CMVN statistics and applying CMVN using accumulated statistics. Global CMVN can be computed and applied as follows:

cmvn = Cmvn(40)  # 40 dimensional features

for key, feats in SequentialMatrixReader("ark:feats.ark"):
    cmvn.accumulate(feats)

with MatrixWriter("ark:feats_norm.ark") as writer:
    for key, feats in SequentialMatrixReader("ark:feats.ark"):
        cmvn.apply(feats, norm_vars=True)
        writer[key] = feats
Variables:stats (DoubleMatrix or None) – Accumulated mean/variance statistics matrix of size 2 x dim+1. This matrix is initialized when a CMVN object is instantiated by specifying a feature dimension or when the init() method is explicitly called. It is None otherwise. stats[0,:-1] represents the sum of accumulated feature vectors. stats[1,:-1] represents the sum of element-wise squares of accumulated feature vectors. stats[0,-1] represents the total count of accumulated feature vectors. stats[1,-1] is initialized to zero but otherwise is not used.
Parameters:dim (int) – The feature dimension. If specified, stats matrix is initialized with the given dimension.
accumulate(feats, weights=None)[source]

Accumulates CMVN statistics.

Computes the CMVN statistics for given features and adds them to the stats matrix.

Parameters:
  • feats (VectorBase or MatrixBase) – The input features.
  • weights (float or VectorBase) – The frame weights. If feats is a single feature vector, then weights should be a single number. If feats is a feature matrix, then weights should be a vector of size feats.num_rows. If weights is not specified or None, then no frame weighting is done.
apply(feats, norm_vars=False, reverse=False)[source]

Applies CMVN to the given feature matrix.

Parameters:
  • feats (Matrix) – The feature matrix to normalize.
  • norm_vars (bool) – Whether to apply variance normalization.
  • reverse (bool) – Whether to apply CMVN in a reverse sense, so as to transform zero-mean, unit-variance features into features with the desired mean and variance.
init(dim)[source]

Initializes the CMVN statistics matrix.

This method is called during object initialization. It can also be called at a later time to initialize or reset the internal statistics matrix.

Parameters:dim (int or None) – The feature dimension. If None, then stats attribute is set to None. Otherwise, it is initialized as a 2 x dim+1 matrix of zeros.
read_stats(rxfilename, binary=True)[source]

Reads CMVN statistics from file.

Parameters:
  • rxfilename (str) – Extended filename for reading CMVN statistics.
  • binary (bool) – Whether to open the file in binary mode.
skip_dims(dims)[source]

Modifies the stats to skip normalization for given dimensions.

This is a destructive operation. The statistics for given dimensions are replaced with fake values that effectively disable normalization in those dimensions. This method should only be called after statistics accumulation is finished since accumulation modifies the stats matrix.

Parameters:dims (List[int]) – Dimensions for which to skip normalization.
write_stats(wxfilename, binary=True)[source]

Writes CMVN statistics to file.

Parameters:
  • wxfilename (str) – Extended filename for writing CMVN statistics.
  • binary (bool) – Whether to open the file in binary mode.

kaldi.transform.fmpe

Functions

compute_am_gmm_feature_deriv Calls C++ function

Classes

Fmpe CLIF wrapper for ::kaldi::Fmpe
FmpeOptions CLIF wrapper for ::kaldi::FmpeOptions
FmpeStats CLIF wrapper for ::kaldi::FmpeStats
FmpeUpdateOptions CLIF wrapper for ::kaldi::FmpeUpdateOptions
class kaldi.transform.fmpe.Fmpe

CLIF wrapper for ::kaldi::Fmpe

acc_stats(feat_in:MatrixBase, gselect:list<list<int>>, direct_feat_deriv:MatrixBase, indirect_feat_deriv:MatrixBase, stats:FmpeStats)

Calls C++ function void ::kaldi::Fmpe::AccStats(::kaldi::MatrixBase<float>, ::std::vector< ::std::vector< ::int32> >, ::kaldi::MatrixBase<float>, ::kaldi::MatrixBase<float> *, ::kaldi::FmpeStats *)

compute_features(feat_in:MatrixBase, gselect:list<list<int>>) → Matrix

Calls C++ function void ::kaldi::Fmpe::ComputeFeatures(::kaldi::MatrixBase<float>, ::std::vector< ::std::vector< ::int32> >, ::kaldi::Matrix<float>*)

feat_dim() → int

Calls C++ function int ::kaldi::Fmpe::FeatDim()

new(gmm:DiagGmm, config:FmpeOptions) → Fmpe

Calls C++ function std::unique_ptr<::kaldi::Fmpe> ::kaldi::Fmpe::Fmpe(::kaldi::DiagGmm, ::kaldi::FmpeOptions)

num_contexts() → int

Calls C++ function int ::kaldi::Fmpe::NumContexts()

num_gauss() → int

Calls C++ function int ::kaldi::Fmpe::NumGauss()

projection_t_num_cols() → int

Calls C++ function int ::kaldi::Fmpe::ProjectionTNumCols()

projection_t_num_rows() → int

Calls C++ function int ::kaldi::Fmpe::ProjectionTNumRows()

read(is:istream, binary:bool)

Calls C++ function void ::kaldi::Fmpe::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool)

update(config:FmpeUpdateOptions, stats:FmpeStats) → float

Calls C++ function float ::kaldi::Fmpe::Update(::kaldi::FmpeUpdateOptions, ::kaldi::FmpeStats)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::Fmpe::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.transform.fmpe.FmpeOptions

CLIF wrapper for ::kaldi::FmpeOptions

context_expansion

C++ ::std::string FmpeOptions.context_expansion

post_scale

C++ ::kaldi::BaseFloat FmpeOptions.post_scale

read(is:istream, binary:bool)

Calls C++ function void ::kaldi::FmpeOptions::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool)

register(opts:OptionsItf)

Calls C++ function void ::kaldi::FmpeOptions::Register(::kaldi::OptionsItf *)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::FmpeOptions::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.transform.fmpe.FmpeStats

CLIF wrapper for ::kaldi::FmpeStats

accumulate_checks(feats:MatrixBase, direct_deriv:MatrixBase, indirect_deriv:MatrixBase)

Calls C++ function void ::kaldi::FmpeStats::AccumulateChecks(::kaldi::MatrixBase<float>, ::kaldi::MatrixBase<float>, ::kaldi::MatrixBase<float>)

deriv_minus() → SubMatrix

Calls C++ function ::kaldi::SubMatrix<float> ::kaldi::FmpeStats::DerivMinus()

deriv_plus() → SubMatrix

Calls C++ function ::kaldi::SubMatrix<float> ::kaldi::FmpeStats::DerivPlus()

do_checks()

Calls C++ function void ::kaldi::FmpeStats::DoChecks()

read(is:istream, binary:bool, add:bool=default)

Calls C++ function void ::kaldi::FmpeStats::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, bool)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::FmpeStats::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.transform.fmpe.FmpeUpdateOptions

CLIF wrapper for ::kaldi::FmpeUpdateOptions

l2_weight

C++ ::kaldi::BaseFloat FmpeUpdateOptions.l2_weight

learning_rate

C++ ::kaldi::BaseFloat FmpeUpdateOptions.learning_rate

register(opts:OptionsItf)

Calls C++ function void ::kaldi::FmpeUpdateOptions::Register(::kaldi::OptionsItf *)

kaldi.transform.fmpe.compute_am_gmm_feature_deriv(am_gmm:AmDiagGmm, trans_model:TransitionModel, posterior:list<list<tuple<int, float>>>, features:MatrixBase, direct_deriv:Matrix, model_diff:AccumAmDiagGmm=default, indirect_deriv:Matrix=default) → float

Calls C++ function float ::kaldi::ComputeAmGmmFeatureDeriv(::kaldi::AmDiagGmm, ::kaldi::TransitionModel, ::kaldi::Posterior, ::kaldi::MatrixBase<float>, ::kaldi::Matrix<float> *, ::kaldi::AccumAmDiagGmm *, ::kaldi::Matrix<float> *)

kaldi.transform.lda

Classes

LdaEstimate CLIF wrapper for ::kaldi::LdaEstimate
LdaEstimateOptions CLIF wrapper for ::kaldi::LdaEstimateOptions
class kaldi.transform.lda.LdaEstimate

CLIF wrapper for ::kaldi::LdaEstimate

accumulate(data:VectorBase, class_id:int, weight:float=default)

Calls C++ function void ::kaldi::LdaEstimate::Accumulate(::kaldi::VectorBase<float>, int, float)

dim() → int

Calls C++ function int ::kaldi::LdaEstimate::Dim()

estimate(opts:LdaEstimateOptions, M:Matrix, Mfull:Matrix=default)

Calls C++ function void ::kaldi::LdaEstimate::Estimate(::kaldi::LdaEstimateOptions, ::kaldi::Matrix<float> *, ::kaldi::Matrix<float> *)

init(num_classes:int, dimension:int)

Calls C++ function void ::kaldi::LdaEstimate::Init(int, int)

num_classes() → int

Calls C++ function int ::kaldi::LdaEstimate::NumClasses()

read(is:istream, binary:bool, add:bool)

Calls C++ function void ::kaldi::LdaEstimate::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, bool)

scale(f:float)

Calls C++ function void ::kaldi::LdaEstimate::Scale(float)

tot_count() → float

Calls C++ function double ::kaldi::LdaEstimate::TotCount()

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::LdaEstimate::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

zero_accumulators()

Calls C++ function void ::kaldi::LdaEstimate::ZeroAccumulators()

class kaldi.transform.lda.LdaEstimateOptions

CLIF wrapper for ::kaldi::LdaEstimateOptions

allow_large_dim

C++ bool LdaEstimateOptions.allow_large_dim

dim

C++ ::int32 LdaEstimateOptions.dim

register(opts:OptionsItf)

Calls C++ function void ::kaldi::LdaEstimateOptions::Register(::kaldi::OptionsItf *)

remove_offset

C++ bool LdaEstimateOptions.remove_offset

within_class_factor

C++ ::kaldi::BaseFloat LdaEstimateOptions.within_class_factor

kaldi.transform.lvtln

Classes

LinearVtln CLIF wrapper for ::kaldi::LinearVtln
class kaldi.transform.lvtln.LinearVtln

CLIF wrapper for ::kaldi::LinearVtln

dim() → int

Calls C++ function int ::kaldi::LinearVtln::Dim()

get_transform(i:int, transform:MatrixBase)

Calls C++ function void ::kaldi::LinearVtln::GetTransform(int, ::kaldi::MatrixBase<float> *)

get_warp(i:int) → float

Calls C++ function float ::kaldi::LinearVtln::GetWarp(int)

new(dim:int, num_classes:int, default_class:int) → LinearVtln

Calls C++ function std::unique_ptr<::kaldi::LinearVtln> ::kaldi::LinearVtln::LinearVtln(int, int, int)

num_classes() → int

Calls C++ function int ::kaldi::LinearVtln::NumClasses()

read(is:istream, binary:bool)

Calls C++ function void ::kaldi::LinearVtln::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool)

set_transform(i:int, transform:MatrixBase)

Calls C++ function void ::kaldi::LinearVtln::SetTransform(int, ::kaldi::MatrixBase<float>)

set_warp(i:int, warp:float)

Calls C++ function void ::kaldi::LinearVtln::SetWarp(int, float)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::LinearVtln::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

kaldi.transform.mllr

Functions

apply_feature_transform_to_stats Calls C++ function
apply_model_transform_to_stats Calls C++ function
compute_fmllr_log_det Calls C++ function
compute_fmllr_matrix_diag_gmm Calls C++ function
compute_fmllr_matrix_diag_gmm_diagonal Calls C++ function
compute_fmllr_matrix_diag_gmm_full Calls C++ function
compute_fmllr_matrix_diag_gmm_offset Calls C++ function
fmllr_aux_func_diag_gmm Calls C++ function
fmllr_aux_func_diag_gmm_double Calls C++ function
fmllr_auxf_gradient Calls C++ function
fmllr_inner_update Calls C++ function
init_fmllr Calls C++ function

Classes

BasisFmllrAccus CLIF wrapper for ::kaldi::BasisFmllrAccus
BasisFmllrEstimate CLIF wrapper for ::kaldi::BasisFmllrEstimate
BasisFmllrOptions CLIF wrapper for ::kaldi::BasisFmllrOptions
DecodableAmDiagGmmRegtreeFmllr CLIF wrapper for ::kaldi::DecodableAmDiagGmmRegtreeFmllr
DecodableAmDiagGmmRegtreeMllr CLIF wrapper for ::kaldi::DecodableAmDiagGmmRegtreeMllr
FmllrDiagGmmAccs CLIF wrapper for ::kaldi::FmllrDiagGmmAccs
FmllrOptions CLIF wrapper for ::kaldi::FmllrOptions
FmllrRawAccs CLIF wrapper for ::kaldi::FmllrRawAccs
FmllrRawOptions CLIF wrapper for ::kaldi::FmllrRawOptions
RegtreeFmllrDiagGmm CLIF wrapper for ::kaldi::RegtreeFmllrDiagGmm
RegtreeFmllrDiagGmmAccs CLIF wrapper for ::kaldi::RegtreeFmllrDiagGmmAccs
RegtreeFmllrOptions CLIF wrapper for ::kaldi::RegtreeFmllrOptions
RegtreeMllrDiagGmm CLIF wrapper for ::kaldi::RegtreeMllrDiagGmm
RegtreeMllrDiagGmmAccs CLIF wrapper for ::kaldi::RegtreeMllrDiagGmmAccs
RegtreeMllrOptions CLIF wrapper for ::kaldi::RegtreeMllrOptions
class kaldi.transform.mllr.BasisFmllrAccus

CLIF wrapper for ::kaldi::BasisFmllrAccus

accu_gradient_scatter(spk_stats:AffineXformStats)

Calls C++ function void ::kaldi::BasisFmllrAccus::AccuGradientScatter(::kaldi::AffineXformStats)

beta_

C++ double BasisFmllrAccus.beta_

dim_

C++ ::int32 BasisFmllrAccus.dim_

from_dim(dim:int) → BasisFmllrAccus

Calls C++ function std::unique_ptr<::kaldi::BasisFmllrAccus> ::kaldi::BasisFmllrAccus::BasisFmllrAccus(int)

grad_scatter_

C++ ::kaldi::SpMatrix< ::kaldi::BaseFloat> BasisFmllrAccus.grad_scatter_

read(is:istream, binary:bool, add:bool=default)

Calls C++ function void ::kaldi::BasisFmllrAccus::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, bool)

resize_accus(dim:int)

Calls C++ function void ::kaldi::BasisFmllrAccus::ResizeAccus(int)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::BasisFmllrAccus::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.transform.mllr.BasisFmllrEstimate

CLIF wrapper for ::kaldi::BasisFmllrEstimate

basis_size() → int

Calls C++ function int ::kaldi::BasisFmllrEstimate::BasisSize()

compute_am_diag_precond(am_gmm:AmDiagGmm, pre_cond:DoubleSpMatrix)

Calls C++ function void ::kaldi::BasisFmllrEstimate::ComputeAmDiagPrecond(::kaldi::AmDiagGmm, ::kaldi::SpMatrix<double> *)

compute_transform(spk_stats:AffineXformStats, out_xform:Matrix, coefficients:Vector, options:BasisFmllrOptions) → float

Calls C++ function double ::kaldi::BasisFmllrEstimate::ComputeTransform(::kaldi::AffineXformStats, ::kaldi::Matrix<float> *, ::kaldi::Vector<float> *, ::kaldi::BasisFmllrOptions)

dim() → int

Calls C++ function int ::kaldi::BasisFmllrEstimate::Dim()

estimate_fmllr_basis(am_gmm:AmDiagGmm, basis_accus:BasisFmllrAccus)

Calls C++ function void ::kaldi::BasisFmllrEstimate::EstimateFmllrBasis(::kaldi::AmDiagGmm, ::kaldi::BasisFmllrAccus)

from_dim(dim:int) → BasisFmllrEstimate

Calls C++ function std::unique_ptr<::kaldi::BasisFmllrEstimate> ::kaldi::BasisFmllrEstimate::BasisFmllrEstimate(int)

read(is:istream, binary:bool)

Calls C++ function void ::kaldi::BasisFmllrEstimate::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::BasisFmllrEstimate::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.transform.mllr.BasisFmllrOptions

CLIF wrapper for ::kaldi::BasisFmllrOptions

min_count

C++ ::kaldi::BaseFloat BasisFmllrOptions.min_count

num_iters

C++ ::int32 BasisFmllrOptions.num_iters

register(opts:OptionsItf)

Calls C++ function void ::kaldi::BasisFmllrOptions::Register(::kaldi::OptionsItf *)

size_scale

C++ ::kaldi::BaseFloat BasisFmllrOptions.size_scale

step_size_iters

C++ ::int32 BasisFmllrOptions.step_size_iters

class kaldi.transform.mllr.DecodableAmDiagGmmRegtreeFmllr

CLIF wrapper for ::kaldi::DecodableAmDiagGmmRegtreeFmllr

is_last_frame(frame:int) → bool

Checks if given frame is the last frame.

log_likelihood(frame:int, index:int) → float

Returns the log-likehood of the given index for the given frame.

num_frames_ready() → int

Returns number of frames ready for decoding.

num_indices() → int

Returns number of indices.

class kaldi.transform.mllr.DecodableAmDiagGmmRegtreeMllr

CLIF wrapper for ::kaldi::DecodableAmDiagGmmRegtreeMllr

is_last_frame(frame:int) → bool

Checks if given frame is the last frame.

log_likelihood(frame:int, index:int) → float

Returns the log-likehood of the given index for the given frame.

num_frames_ready() → int

Returns number of frames ready for decoding.

num_indices() → int

Returns number of indices.

trans_model() → TransitionModel

Returns the transition model.

class kaldi.transform.mllr.FmllrDiagGmmAccs

CLIF wrapper for ::kaldi::FmllrDiagGmmAccs

G_

C++ ::std::vector< ::kaldi::SpMatrix<double> > AffineXformStats.G_

K_

C++ ::kaldi::Matrix<double> AffineXformStats.K_

accumulate_for_gmm(gmm:DiagGmm, data:VectorBase, weight:float) → float

Calls C++ function float ::kaldi::FmllrDiagGmmAccs::AccumulateForGmm(::kaldi::DiagGmm, ::kaldi::VectorBase<float>, float)

accumulate_for_gmm_preselect(gmm:DiagGmm, gselect:list<int>, data:VectorBase, weight:float) → float

Calls C++ function float ::kaldi::FmllrDiagGmmAccs::AccumulateForGmmPreselect(::kaldi::DiagGmm, ::std::vector< ::int32>, ::kaldi::VectorBase<float>, float)

accumulate_from_posteriors(gmm:DiagGmm, data:VectorBase, posteriors:VectorBase)

Calls C++ function void ::kaldi::FmllrDiagGmmAccs::AccumulateFromPosteriors(::kaldi::DiagGmm, ::kaldi::VectorBase<float>, ::kaldi::VectorBase<float>)

accumulate_from_posteriors_preselect(gmm:DiagGmm, gselect:list<int>, data:VectorBase, posteriors:VectorBase)

Calls C++ function void ::kaldi::FmllrDiagGmmAccs::AccumulateFromPosteriorsPreselect(::kaldi::DiagGmm, ::std::vector< ::int32>, ::kaldi::VectorBase<float>, ::kaldi::VectorBase<float>)

add(other:AffineXformStats)

Calls C++ function void ::kaldi::AffineXformStats::Add(::kaldi::AffineXformStats)

beta_

C++ double AffineXformStats.beta_

copy_stats(other:AffineXformStats)

Calls C++ function void ::kaldi::AffineXformStats::CopyStats(::kaldi::AffineXformStats)

dim() → int

Calls C++ function int ::kaldi::AffineXformStats::Dim()

dim_

C++ ::int32 AffineXformStats.dim_

from_dim(dim:int, opts:FmllrOptions=default) → FmllrDiagGmmAccs

Calls C++ function std::unique_ptr<::kaldi::FmllrDiagGmmAccs> ::kaldi::FmllrDiagGmmAccs::FmllrDiagGmmAccs(int, ::kaldi::FmllrOptions)

from_gmm(gmm:DiagGmm, fgmm_accs:AccumFullGmm) → FmllrDiagGmmAccs

Calls C++ function std::unique_ptr<::kaldi::FmllrDiagGmmAccs> ::kaldi::FmllrDiagGmmAccs::FmllrDiagGmmAccs(::kaldi::DiagGmm, ::kaldi::AccumFullGmm)

from_options(opts:FmllrOptions) → FmllrDiagGmmAccs

Calls C++ function std::unique_ptr<::kaldi::FmllrDiagGmmAccs> ::kaldi::FmllrDiagGmmAccs::FmllrDiagGmmAccs(::kaldi::FmllrOptions)

from_other(other:FmllrDiagGmmAccs) → FmllrDiagGmmAccs

Calls C++ function std::unique_ptr<::kaldi::FmllrDiagGmmAccs> ::kaldi::FmllrDiagGmmAccs::FmllrDiagGmmAccs(::kaldi::FmllrDiagGmmAccs)

init(dim:int)

Calls C++ function void ::kaldi::FmllrDiagGmmAccs::Init(unsigned long)

new(other:AffineXformStats) → AffineXformStats

Calls C++ function std::unique_ptr<::kaldi::AffineXformStats> ::kaldi::AffineXformStats::AffineXformStats(::kaldi::AffineXformStats)

read(is:istream, binary:bool, add:bool)

Calls C++ function void ::kaldi::AffineXformStats::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, bool)

set_zero()

Calls C++ function void ::kaldi::AffineXformStats::SetZero()

update(opts:FmllrOptions, fmllr_mat:MatrixBase) -> (objf_impr:float, count:float)

Calls C++ function void ::kaldi::FmllrDiagGmmAccs::Update(::kaldi::FmllrOptions, ::kaldi::MatrixBase<float> , float, float*)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::AffineXformStats::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.transform.mllr.FmllrOptions

CLIF wrapper for ::kaldi::FmllrOptions

min_count

C++ ::kaldi::BaseFloat FmllrOptions.min_count

num_iters

C++ ::int32 FmllrOptions.num_iters

register(opts:OptionsItf)

Calls C++ function void ::kaldi::FmllrOptions::Register(::kaldi::OptionsItf *)

update_type

C++ ::std::string FmllrOptions.update_type

class kaldi.transform.mllr.FmllrRawAccs

CLIF wrapper for ::kaldi::FmllrRawAccs

accumulate_for_gmm(gmm:DiagGmm, data:VectorBase, weight:float) → float

Calls C++ function float ::kaldi::FmllrRawAccs::AccumulateForGmm(::kaldi::DiagGmm, ::kaldi::VectorBase<float>, float)

accumulate_from_posteriors(gmm:DiagGmm, data:VectorBase, posteriors:VectorBase)

Calls C++ function void ::kaldi::FmllrRawAccs::AccumulateFromPosteriors(::kaldi::DiagGmm, ::kaldi::VectorBase<float>, ::kaldi::VectorBase<float>)

full_dim() → int

Calls C++ function int ::kaldi::FmllrRawAccs::FullDim()

model_dim() → int

Calls C++ function int ::kaldi::FmllrRawAccs::ModelDim()

new(raw_dim:int, model_dim:int, full_transform:Matrix) → FmllrRawAccs

Calls C++ function std::unique_ptr<::kaldi::FmllrRawAccs> ::kaldi::FmllrRawAccs::FmllrRawAccs(int, int, ::kaldi::Matrix<float>)

raw_dim() → int

Calls C++ function int ::kaldi::FmllrRawAccs::RawDim()

set_zero()

Calls C++ function void ::kaldi::FmllrRawAccs::SetZero()

splice_width() → int

Calls C++ function int ::kaldi::FmllrRawAccs::SpliceWidth()

update(opts:FmllrRawOptions, raw_fmllr_mat:MatrixBase) -> (objf_impr:float, count:float)

Calls C++ function void ::kaldi::FmllrRawAccs::Update(::kaldi::FmllrRawOptions, ::kaldi::MatrixBase<float> , float, float*)

class kaldi.transform.mllr.FmllrRawOptions

CLIF wrapper for ::kaldi::FmllrRawOptions

min_count

C++ ::kaldi::BaseFloat FmllrRawOptions.min_count

num_iters

C++ ::int32 FmllrRawOptions.num_iters

register(opts:OptionsItf)

Calls C++ function void ::kaldi::FmllrRawOptions::Register(::kaldi::OptionsItf *)

class kaldi.transform.mllr.RegtreeFmllrDiagGmm

CLIF wrapper for ::kaldi::RegtreeFmllrDiagGmm

base_to_reg_class(bclass:int) → int

Calls C++ function int ::kaldi::RegtreeFmllrDiagGmm::Base2RegClass(int)

compute_log_dets()

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmm::ComputeLogDets()

dim() → int

Calls C++ function int ::kaldi::RegtreeFmllrDiagGmm::Dim()

get_log_dets(out:VectorBase)

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmm::GetLogDets(::kaldi::VectorBase<float> *)

get_xform_matrix(xform_index:int) → Matrix

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmm::GetXformMatrix(int, ::kaldi::Matrix<float>*)

init(num_xforms:int, dim:int)

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmm::Init(unsigned long, unsigned long)

new(other:RegtreeFmllrDiagGmm) → RegtreeFmllrDiagGmm

Calls C++ function std::unique_ptr<::kaldi::RegtreeFmllrDiagGmm> ::kaldi::RegtreeFmllrDiagGmm::RegtreeFmllrDiagGmm(::kaldi::RegtreeFmllrDiagGmm)

num_base_classes() → int

Calls C++ function int ::kaldi::RegtreeFmllrDiagGmm::NumBaseClasses()

num_reg_classes() → int

Calls C++ function int ::kaldi::RegtreeFmllrDiagGmm::NumRegClasses()

read(is:istream, binary:bool)

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmm::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool)

set_bclass2xforms(in:list<int>)

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmm::set_bclass2xforms(::std::vector< ::int32>)

set_parameters(mat:MatrixBase, regclass:int)

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmm::SetParameters(::kaldi::MatrixBase<float>, unsigned long)

set_unit()

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmm::SetUnit()

transform_feature(in:VectorBase) → list<Vector>

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmm::TransformFeature(::kaldi::VectorBase<float>, ::std::vector< ::kaldi::Vector< ::kaldi::BaseFloat> >*)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmm::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.transform.mllr.RegtreeFmllrDiagGmmAccs

CLIF wrapper for ::kaldi::RegtreeFmllrDiagGmmAccs

accumulate_for_gaussian(regtree:RegressionTree, am:AmDiagGmm, data:VectorBase, pdf_index:int, gauss_index:int, weight:float)

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmmAccs::AccumulateForGaussian(::kaldi::RegressionTree, ::kaldi::AmDiagGmm, ::kaldi::VectorBase<float>, unsigned long, unsigned long, float)

accumulate_for_gmm(regtree:RegressionTree, am:AmDiagGmm, data:VectorBase, pdf_index:int, weight:float) → float

Calls C++ function float ::kaldi::RegtreeFmllrDiagGmmAccs::AccumulateForGmm(::kaldi::RegressionTree, ::kaldi::AmDiagGmm, ::kaldi::VectorBase<float>, unsigned long, float)

baseclass_stats

C++ clif_type_57 RegtreeFmllrDiagGmmAccs.baseclass_stats()

dim() → int

Calls C++ function int ::kaldi::RegtreeFmllrDiagGmmAccs::Dim()

init(num_bclass:int, dim:int)

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmmAccs::Init(unsigned long, unsigned long)

num_base_classes() → int

Calls C++ function int ::kaldi::RegtreeFmllrDiagGmmAccs::NumBaseClasses()

read(is:istream, binary:bool, add:bool)

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmmAccs::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, bool)

set_zero()

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmmAccs::SetZero()

update(regtree:RegressionTree, opts:RegtreeFmllrOptions, out_mllr:RegtreeFmllrDiagGmm) -> (auxf_impr:float, t:float)

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmmAccs::Update(::kaldi::RegressionTree, ::kaldi::RegtreeFmllrOptions, ::kaldi::RegtreeFmllrDiagGmm , float, float*)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::RegtreeFmllrDiagGmmAccs::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.transform.mllr.RegtreeFmllrOptions

CLIF wrapper for ::kaldi::RegtreeFmllrOptions

min_count

C++ ::kaldi::BaseFloat RegtreeFmllrOptions.min_count

num_iters

C++ ::int32 RegtreeFmllrOptions.num_iters

register(opts:OptionsItf)

Calls C++ function void ::kaldi::RegtreeFmllrOptions::Register(::kaldi::OptionsItf *)

update_type

C++ ::std::string RegtreeFmllrOptions.update_type

use_regtree

C++ bool RegtreeFmllrOptions.use_regtree

class kaldi.transform.mllr.RegtreeMllrDiagGmm

CLIF wrapper for ::kaldi::RegtreeMllrDiagGmm

get_transformed_means(regtree:RegressionTree, am:AmDiagGmm, pdf_index:int, out:MatrixBase)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmm::GetTransformedMeans(::kaldi::RegressionTree, ::kaldi::AmDiagGmm, int, ::kaldi::MatrixBase<float> *)

init(num_xforms:int, dim:int)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmm::Init(int, int)

read(is:istream, binary:bool)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmm::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool)

set_bclass2xforms(in:list<int>)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmm::set_bclass2xforms(::std::vector< ::int32>)

set_parameters(mat:MatrixBase, regclass:int)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmm::SetParameters(::kaldi::MatrixBase<float>, int)

set_unit()

Calls C++ function void ::kaldi::RegtreeMllrDiagGmm::SetUnit()

transform_model(regtree:RegressionTree, am:AmDiagGmm)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmm::TransformModel(::kaldi::RegressionTree, ::kaldi::AmDiagGmm *)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmm::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

xform_matrices

C++ clif_type_22 RegtreeMllrDiagGmm.xform_matrices()

class kaldi.transform.mllr.RegtreeMllrDiagGmmAccs

CLIF wrapper for ::kaldi::RegtreeMllrDiagGmmAccs

accumulate_for_gaussian(regtree:RegressionTree, am:AmDiagGmm, data:VectorBase, pdf_index:int, gauss_index:int, weight:float)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmmAccs::AccumulateForGaussian(::kaldi::RegressionTree, ::kaldi::AmDiagGmm, ::kaldi::VectorBase<float>, int, int, float)

accumulate_for_gmm(regtree:RegressionTree, am:AmDiagGmm, data:VectorBase, pdf_index:int, weight:float) → float

Calls C++ function float ::kaldi::RegtreeMllrDiagGmmAccs::AccumulateForGmm(::kaldi::RegressionTree, ::kaldi::AmDiagGmm, ::kaldi::VectorBase<float>, int, float)

baseclass_stats

C++ clif_type_53 RegtreeMllrDiagGmmAccs.baseclass_stats()

dim() → int

Calls C++ function int ::kaldi::RegtreeMllrDiagGmmAccs::Dim()

init(num_bclass:int, dim:int)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmmAccs::Init(int, int)

num_base_classes() → int

Calls C++ function int ::kaldi::RegtreeMllrDiagGmmAccs::NumBaseClasses()

read(is:istream, binary:bool, add:bool)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmmAccs::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, bool)

set_zero()

Calls C++ function void ::kaldi::RegtreeMllrDiagGmmAccs::SetZero()

update(regtree:RegressionTree, opts:RegtreeMllrOptions, out_mllr:RegtreeMllrDiagGmm) -> (auxf_impr:float, t:float)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmmAccs::Update(::kaldi::RegressionTree, ::kaldi::RegtreeMllrOptions, ::kaldi::RegtreeMllrDiagGmm , float, float*)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::RegtreeMllrDiagGmmAccs::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.transform.mllr.RegtreeMllrOptions

CLIF wrapper for ::kaldi::RegtreeMllrOptions

min_count

C++ ::kaldi::BaseFloat RegtreeMllrOptions.min_count

register(opts:OptionsItf)

Calls C++ function void ::kaldi::RegtreeMllrOptions::Register(::kaldi::OptionsItf *)

use_regtree

C++ bool RegtreeMllrOptions.use_regtree

kaldi.transform.mllr.apply_feature_transform_to_stats(xform:MatrixBase, stats:AffineXformStats)

Calls C++ function void ::kaldi::ApplyFeatureTransformToStats(::kaldi::MatrixBase<float>, ::kaldi::AffineXformStats *)

kaldi.transform.mllr.apply_model_transform_to_stats(xform:MatrixBase, stats:AffineXformStats)

Calls C++ function void ::kaldi::ApplyModelTransformToStats(::kaldi::MatrixBase<float>, ::kaldi::AffineXformStats *)

kaldi.transform.mllr.compute_fmllr_log_det(fmllr_mat:Matrix) → float

Calls C++ function float ::kaldi::ComputeFmllrLogDet(::kaldi::Matrix<float>)

kaldi.transform.mllr.compute_fmllr_matrix_diag_gmm(in_xform:MatrixBase, stats:AffineXformStats, fmllr_type:str, num_iters:int, out_xform:MatrixBase) → float

Calls C++ function float ::kaldi::ComputeFmllrMatrixDiagGmm(::kaldi::MatrixBase<float>, ::kaldi::AffineXformStats, ::std::string, int, ::kaldi::MatrixBase<float> *)

kaldi.transform.mllr.compute_fmllr_matrix_diag_gmm_diagonal(in_xform:MatrixBase, stats:AffineXformStats, out_xform:MatrixBase) → float

Calls C++ function float ::kaldi::ComputeFmllrMatrixDiagGmmDiagonal(::kaldi::MatrixBase<float>, ::kaldi::AffineXformStats, ::kaldi::MatrixBase<float> *)

kaldi.transform.mllr.compute_fmllr_matrix_diag_gmm_full(in_xform:MatrixBase, stats:AffineXformStats, num_iters:int, out_xform:MatrixBase) → float

Calls C++ function float ::kaldi::ComputeFmllrMatrixDiagGmmFull(::kaldi::MatrixBase<float>, ::kaldi::AffineXformStats, int, ::kaldi::MatrixBase<float> *)

kaldi.transform.mllr.compute_fmllr_matrix_diag_gmm_offset(in_xform:MatrixBase, stats:AffineXformStats, out_xform:MatrixBase) → float

Calls C++ function float ::kaldi::ComputeFmllrMatrixDiagGmmOffset(::kaldi::MatrixBase<float>, ::kaldi::AffineXformStats, ::kaldi::MatrixBase<float> *)

kaldi.transform.mllr.fmllr_aux_func_diag_gmm(xform:MatrixBase, stats:AffineXformStats) → float

Calls C++ function float ::kaldi::FmllrAuxFuncDiagGmm(::kaldi::MatrixBase<float>, ::kaldi::AffineXformStats)

kaldi.transform.mllr.fmllr_aux_func_diag_gmm_double(xform:DoubleMatrixBase, stats:AffineXformStats) → float

Calls C++ function double ::kaldi::FmllrAuxFuncDiagGmm(::kaldi::MatrixBase<double>, ::kaldi::AffineXformStats)

kaldi.transform.mllr.fmllr_auxf_gradient(xform:MatrixBase, stats:AffineXformStats, grad_out:MatrixBase) → float

Calls C++ function float ::kaldi::FmllrAuxfGradient(::kaldi::MatrixBase<float>, ::kaldi::AffineXformStats, ::kaldi::MatrixBase<float> *)

kaldi.transform.mllr.fmllr_inner_update(inv_G:DoubleSpMatrix, k:DoubleVectorBase, beta:float, row:int, transform:DoubleMatrixBase)

Calls C++ function void ::kaldi::FmllrInnerUpdate(::kaldi::SpMatrix<double>, ::kaldi::VectorBase<double>, double, int, ::kaldi::MatrixBase<double> *)

kaldi.transform.mllr.init_fmllr(dim:int) → Matrix

Calls C++ function void ::kaldi::InitFmllr(int, ::kaldi::Matrix<float>*)

kaldi.transform.mllt

Classes

MlltAccs CLIF wrapper for ::kaldi::MlltAccs
class kaldi.transform.mllt.MlltAccs

CLIF wrapper for ::kaldi::MlltAccs

G_

C++ ::std::vector< ::kaldi::SpMatrix<double> > MlltAccs.G_

accumulate_from_gmm(gmm:DiagGmm, data:VectorBase, weight:float) → float

Calls C++ function float ::kaldi::MlltAccs::AccumulateFromGmm(::kaldi::DiagGmm, ::kaldi::VectorBase<float>, float)

accumulate_from_gmm_preselect(gmm:DiagGmm, gselect:list<int>, data:VectorBase, weight:float) → float

Calls C++ function float ::kaldi::MlltAccs::AccumulateFromGmmPreselect(::kaldi::DiagGmm, ::std::vector< ::int32>, ::kaldi::VectorBase<float>, float)

accumulate_from_posteriors(gmm:DiagGmm, data:VectorBase, posteriors:VectorBase)

Calls C++ function void ::kaldi::MlltAccs::AccumulateFromPosteriors(::kaldi::DiagGmm, ::kaldi::VectorBase<float>, ::kaldi::VectorBase<float>)

beta_

C++ double MlltAccs.beta_

dim() → int

Calls C++ function int ::kaldi::MlltAccs::Dim()

init(dim:int, rand_prune:float=default)

Calls C++ function void ::kaldi::MlltAccs::Init(int, float)

new(dim:int, rand_prune:float=default) → MlltAccs

Calls C++ function std::unique_ptr<::kaldi::MlltAccs> ::kaldi::MlltAccs::MlltAccs(int, float)

rand_prune_

C++ ::kaldi::BaseFloat MlltAccs.rand_prune_

read(is:istream, binary:bool, add:bool=default)

Calls C++ function void ::kaldi::MlltAccs::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, bool)

update(M:MatrixBase) -> (objf_impr_out:float, count_out:float)

Calls C++ function void ::kaldi::MlltAccs::Update(::kaldi::MatrixBase<float> , float, float*)

update_static(beta:float, G:list<DoubleSpMatrix>, M:MatrixBase) -> (objf_impr_out:float, count_out:float)

Calls C++ function void ::kaldi::MlltAccs::Update(double, ::std::vector< ::kaldi::SpMatrix<double> >, ::kaldi::MatrixBase<float> , float, float*)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::MlltAccs::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)