kaldi.gmm

Functions

augment_gmm_flags Calls C++ function
get_split_targets Calls C++ function
gmm_flags_to_string Calls C++ function
mle_full_gmm_update Calls C++ function
string_to_gmm_flags Calls C++ function
string_to_sgmm_update_flags Calls C++ function
string_to_sgmm_write_flags Calls C++ function

Classes

AccumDiagGmm CLIF wrapper for ::kaldi::AccumDiagGmm
AccumFullGmm CLIF wrapper for ::kaldi::AccumFullGmm
DiagGmm Gaussian Mixture Model with diagonal covariances.
FullGmm Python wrapper for Kaldi::FullGmm<Float>
FullGmmNormal CLIF wrapper for ::kaldi::FullGmmNormal
GmmUpdateFlags An enumeration.
MapDiagGmmOptions CLIF wrapper for ::kaldi::MapDiagGmmOptions
MleDiagGmmOptions CLIF wrapper for ::kaldi::MleDiagGmmOptions
MleFullGmmOptions CLIF wrapper for ::kaldi::MleFullGmmOptions
SgmmUpdateFlags An enumeration.
SgmmWriteFlags An enumeration.
class kaldi.gmm.AccumDiagGmm

CLIF wrapper for ::kaldi::AccumDiagGmm

accumulate_for_component(data:VectorBase, comp_index:int, weight:float)

Calls C++ function void ::kaldi::AccumDiagGmm::AccumulateForComponent(::kaldi::VectorBase<float>, int, float)

accumulate_from_diag(gmm:DiagGmm, data:VectorBase, frame_posterior:float) → float

Calls C++ function float ::kaldi::AccumDiagGmm::AccumulateFromDiag(::kaldi::DiagGmm, ::kaldi::VectorBase<float>, float)

accumulate_from_diag_multi_threaded(gmm:DiagGmm, data:MatrixBase, frame_weights:VectorBase, num_threads:int) → float

Calls C++ function float ::kaldi::AccumDiagGmm::AccumulateFromDiagMultiThreaded(::kaldi::DiagGmm, ::kaldi::MatrixBase<float>, ::kaldi::VectorBase<float>, int)

accumulate_from_posteriors(data:VectorBase, gauss_posteriors:VectorBase)

Calls C++ function void ::kaldi::AccumDiagGmm::AccumulateFromPosteriors(::kaldi::VectorBase<float>, ::kaldi::VectorBase<float>)

add(scale:float, acc:AccumDiagGmm)

Calls C++ function void ::kaldi::AccumDiagGmm::Add(double, ::kaldi::AccumDiagGmm)

add_stats_for_component(comp_id:int, occ:float, x_stats:DoubleVectorBase, x2_stats:DoubleVectorBase)

Calls C++ function void ::kaldi::AccumDiagGmm::AddStatsForComponent(int, double, ::kaldi::VectorBase<double>, ::kaldi::VectorBase<double>)

assert_equal(other:AccumDiagGmm)

Calls C++ function void ::kaldi::AccumDiagGmm::AssertEqual(::kaldi::AccumDiagGmm)

dim() → int

Calls C++ function int ::kaldi::AccumDiagGmm::Dim()

flags_

C++ clif_type_56 AccumDiagGmm.Flags()

new(gmm:DiagGmm, flags:int) → AccumDiagGmm

Calls C++ function std::unique_ptr<::kaldi::AccumDiagGmm> ::kaldi::AccumDiagGmm::AccumDiagGmm(::kaldi::DiagGmm, unsigned short)

num_gauss() → int

Calls C++ function int ::kaldi::AccumDiagGmm::NumGauss()

read(in_stream:istream, binary:bool, add:bool)

Calls C++ function void ::kaldi::AccumDiagGmm::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, bool)

resize(num_gauss:int, dim:int, flags:int)

Calls C++ function void ::kaldi::AccumDiagGmm::Resize(int, int, unsigned short)

resize_with_gmm(gmm:DiagGmm, flags:int)

Calls C++ function void ::kaldi::AccumDiagGmm::Resize(::kaldi::DiagGmm, unsigned short)

scale(f:float, flags:int)

Calls C++ function void ::kaldi::AccumDiagGmm::Scale(float, unsigned short)

set_zero(flags:int)

Calls C++ function void ::kaldi::AccumDiagGmm::SetZero(unsigned short)

smooth_stats(tau:float)

Calls C++ function void ::kaldi::AccumDiagGmm::SmoothStats(float)

smooth_with_accum(tau:float, src_acc:AccumDiagGmm)

Calls C++ function void ::kaldi::AccumDiagGmm::SmoothWithAccum(float, ::kaldi::AccumDiagGmm)

smooth_with_model(tau:float, src_gmm:DiagGmm)

Calls C++ function void ::kaldi::AccumDiagGmm::SmoothWithModel(float, ::kaldi::DiagGmm)

with_other(other:AccumDiagGmm) → AccumDiagGmm

Calls C++ function std::unique_ptr<::kaldi::AccumDiagGmm> ::kaldi::AccumDiagGmm::AccumDiagGmm(::kaldi::AccumDiagGmm)

write(out_stream:ostream, binary:bool)

Calls C++ function void ::kaldi::AccumDiagGmm::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.gmm.AccumFullGmm

CLIF wrapper for ::kaldi::AccumFullGmm

accumulate_for_component(data:VectorBase, comp_index:int, weight:float)

Calls C++ function void ::kaldi::AccumFullGmm::AccumulateForComponent(::kaldi::VectorBase<float>, int, float)

accumulate_from_diag(gmm:DiagGmm, data:VectorBase, frame_posterior:float) → float

Calls C++ function float ::kaldi::AccumFullGmm::AccumulateFromDiag(::kaldi::DiagGmm, ::kaldi::VectorBase<float>, float)

accumulate_from_full(gmm:FullGmm, data:VectorBase, frame_posterior:float) → float

Calls C++ function float ::kaldi::AccumFullGmm::AccumulateFromFull(::kaldi::FullGmm, ::kaldi::VectorBase<float>, float)

accumulate_from_posteriors(data:VectorBase, gauss_posteriors:VectorBase)

Calls C++ function void ::kaldi::AccumFullGmm::AccumulateFromPosteriors(::kaldi::VectorBase<float>, ::kaldi::VectorBase<float>)

covariance_accumulator() → list<DoubleSpMatrix>

Calls C++ function ::std::vector< ::kaldi::SpMatrix<double> > ::kaldi::AccumFullGmm::covariance_accumulator()

dim() → int

Calls C++ function int ::kaldi::AccumFullGmm::Dim()

flags() → int

Calls C++ function unsigned short ::kaldi::AccumFullGmm::Flags()

mean_accumulator() → DoubleMatrix

Calls C++ function ::kaldi::Matrix<double> ::kaldi::AccumFullGmm::mean_accumulator()

new_with_full(gmm:FullGmm, flags:int) → AccumFullGmm

Calls C++ function std::unique_ptr<::kaldi::AccumFullGmm> ::kaldi::AccumFullGmm::AccumFullGmm(::kaldi::FullGmm, unsigned short)

new_with_other(gmm:AccumFullGmm) → AccumFullGmm

Calls C++ function std::unique_ptr<::kaldi::AccumFullGmm> ::kaldi::AccumFullGmm::AccumFullGmm(::kaldi::AccumFullGmm)

new_with_params(num_comp:int, dim:int, flags:int) → AccumFullGmm

Calls C++ function std::unique_ptr<::kaldi::AccumFullGmm> ::kaldi::AccumFullGmm::AccumFullGmm(int, int, unsigned short)

num_gauss() → int

Calls C++ function int ::kaldi::AccumFullGmm::NumGauss()

occupancy() → DoubleVector

Calls C++ function ::kaldi::Vector<double> ::kaldi::AccumFullGmm::occupancy()

read(in_stream:istream, binary:bool, add:bool)

Calls C++ function void ::kaldi::AccumFullGmm::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, bool)

resize(num_comp:int, dim:int, flags:int)

Calls C++ function void ::kaldi::AccumFullGmm::Resize(int, int, unsigned short)

resize_var_accumulator(num_comp:int, dim:int)

Calls C++ function void ::kaldi::AccumFullGmm::ResizeVarAccumulator(int, int)

resize_with_full(gmm:FullGmm, flags:int)

Calls C++ function void ::kaldi::AccumFullGmm::Resize(::kaldi::FullGmm, unsigned short)

scale(f:float, flags:int)

Calls C++ function void ::kaldi::AccumFullGmm::Scale(float, unsigned short)

set_zero(flags:int)

Calls C++ function void ::kaldi::AccumFullGmm::SetZero(unsigned short)

write(out_stream:ostream, binary:bool)

Calls C++ function void ::kaldi::AccumFullGmm::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.gmm.DiagGmm(nmix=0, dim=0)[source]

Gaussian Mixture Model with diagonal covariances.

Parameters:
  • nmix (int) – Number of Gaussians to mix
  • dim (int) – Dimension of each component
Creates a new DiagGmm with specified number of gaussian mixtures
and dimensions.
Parameters:
  • nmix (int) – number of gaussian to mix
  • dim (int) – dimension
component_log_likelihood(data:VectorBase, comp_id:int) → float

Computes the log-likelihood of a data point given a single Gaussian component.

Parameters:
Returns:

Log-likehood of input data point for a given component

component_posteriors(data)[source]
Computes the posterior probabilities of all Gaussian components given
a data point.
Parameters:data (VectorBase) – Data point with the same dimension as each component.
Returns:2-element tuple containing
  • loglike (float): Log-likelihood
  • posteriors (Vector): Vector with the posterior probabilities
Raises:ValueError if data is not consistent with gmm dimension.
compute_gconsts() → int

Sets the gconsts.

Returns:Number of gconsts that are invalid e.g. because of zero weights or variances.
copy(src)[source]

Copies data from src into this DiagGmm and returns this DiagGmm.

Parameters:src (FullGmm or DiagGmm) – Source Gmm to copy
Returns:This DiagGmm after update.
copy_from_diag(diaggmm:DiagGmm)

Copies from given DiagGmm

copy_from_full(fullgmm:FullGmm)

Copies from given FullGmm

dim() → int

Returns the dimensionality of the Gaussian mean vectors.

from_clusterable(gc:GaussClusterable, var_floor:float) → DiagGmm

Creates a new DiagGmm from a GaussClusterable.

from_nmix_dim(nmix:int, dim:int) → DiagGmm

Creates a new DiagGmm with given number of mixtures and dimension.

from_other(gmm:DiagGmm) → DiagGmm

Creates a new DiagGmm from another DiagGmm.

gaussian_selection(data:VectorBase, num_gselect:int) -> (log_like:float, output:list<int>)

Gets gaussian selection information for one frame.

Parameters:
Returns:

Log-likelihood for the input frame and the best num_gselect indices (sorted from best to worst likelihood).

gaussian_selection_matrix(data:MatrixBase, num_gselect:int) -> (log_like:float, output:list<list<int>>)

Gets gaussian selection information for a sequence of frames.

Parameters:
Returns:

Log-likelihood for the input frame and the best num_gselect indices (sorted from best to worst likelihood) for each data point.

gaussian_selection_preselect(data:VectorBase, preselect:list<int>, num_gselect:int) -> (log_like:float, output:list<int>)

Get gaussian selection information for one frame.

Parameters:
  • data (kaldi.matrix.Vector) – data point
  • preselect (list) – subset of mixture components
  • num_gselect (int) – number of gaussians to select
Returns:

Log-likelihood for the input frame and the best num_gselect indices that were preselected (sorted from best to worst likelihood).

gconsts() → Vector

Returns gconsts

generate(output:VectorBase)

Generates a random data point from this distribution.

Parameters:output (kaldi.matrix.Vector) – Output vector
get_component_mean(gauss:int, out:VectorBase)

Gets component mean.

get_component_variance(gauss:int, out:VectorBase)

Gets component variance.

get_means() → Matrix

Returns component means.

get_vars() → Matrix

Returns component variances.

interpolate(rho:float, source:DiagGmm, flags:int=default)

Interpolates this model with diagonal GMM

this <- rho * source + (1 - rho) * this

Parameters:
  • rho (float) – Interpolation weight
  • source (DiagGmm) – Source model
  • flags (int) – Interpolation flags
interpolate_full(rho:float, source:FullGmm, flags:int=default)

Interpolates this model with full GMM

this <- rho * source + (1 - rho) * this

Parameters:
  • rho (float) – Interpolation weight
  • source (FullGmm) – Source model
  • flags (int) – Interpolation flags
inv_vars() → Matrix

Returns inverse variances

log_likelihood(data:VectorBase) → float

Computes the log-likelihood for a data point

Parameters:data (kaldi.matrix.Vector) – data point
log_likelihoods(data:VectorBase) → Vector

Computes the per-component log-likelihoods for a data point

Parameters:data (kaldi.matrix.Vector) – data point
log_likelihoods_matrix(data:MatrixBase) → Matrix

Computes the per-component log-likelihoods for a sequence of data points

The row index of the input data matrix and the output log-likelihoods matrix is the frame index.

Parameters:data (kaldi.matrix.Matrix) – sequence of data points
log_likelihoods_preselect(data:VectorBase, indices:list<int>) → Vector

Computes the per-component log-likelihoods of a subset of mixture components.

Parameters:
means_invvars() → Matrix

Returns means times inverse variances

merge(target_components:int) → list<int>

Merges components

Parameters:target_components (int) – number of target components
Returns:The order in which components were merged.
num_gauss() → int

Returns the number of mixture components.

perturb(perturb_factor:float)

Perturbs components

Component means are perturbed with a random vector multiplied by the pertrubation factor.

Parameters:perturb_factor (float) – perturbation factor
read(is:istream, binary:bool)

Reads gaussian mixture model from input stream.

remove_component(gauss:int, renorm_weights:bool)

Removes single component from model.

remove_components(gauss:list<int>, renorm_weights:bool)

Removes multiple components from model.

resize(nmix:int, dim:int)

Resizes arrays to this dim. Does not initialize data.

set_component_inv_var(gauss:int, in:VectorBase)

Sets inv-var for a single component.

set_component_mean(gauss:int, in:VectorBase)

Sets mean for a single component.

Internally multiplies with inv-var.

set_component_weight(gauss:int, weight:float)

Sets mixture weight for a single component.

set_inv_vars(v:MatrixBase)

Sets inverse variances.

set_inv_vars_and_means(invvars:MatrixBase, means:MatrixBase)

Sets inverse variances and means.

set_means(m:MatrixBase)

Sets means.

set_weights(w:VectorBase)

Sets mixture weights.

split(target_components:int, perturb_factor:float) → list<int>

Splits components

Parameters:
  • target_components (int) – number of target components
  • perturb_factor (float) – perturbation factor
Returns:

The order in which components were split.

valid_gconsts() → bool

Checks if gconsts are valid

weights() → Vector

Returns mixture weights

write(os:ostream, binary:bool)

Writes gaussian mixture model to output stream.

class kaldi.gmm.FullGmm(nmix=0, dim=0)[source]

Python wrapper for Kaldi::FullGmm<Float>

Provides a more pythonic access to the C++ methods.

Parameters:
  • nmix (int) – number of gaussian to mix
  • dim (int) – dimension of each gaussian
Raises:

ValueError if nmix or dimension are not positive integers.

Creates a new FullGmm with specified number of gaussian mixtures and dimensions.

Parameters:
  • nmix (int) – number of gaussian to mix
  • dim (int) – dimension
component_log_likelihood(data:VectorBase, comp_id:int) → float

Computes the log-likelihood of a data point given a single Gaussian component.

Parameters:
Returns:

Log-likehood of input data point for a given component

component_posteriors(data)[source]
Computes the posterior probabilities of all Gaussian components given
a data point.
Parameters:data (VectorBase) – Data point with the same dimension as each component.
Returns:2-element tuple containing
  • loglike (float): Log-likelihood
  • posteriors (Vector): Vector with the posterior probabilities
Raises:ValueError if data is not consistent with gmm dimension.
compute_gconsts() → int

Sets the gconsts.

Returns:Number of gconsts that are invalid e.g. because of zero weights or variances.
copy(src)[source]

Copies data from src into this FullGmm and returns this FullGmm.

Parameters:src (FullGmm or DiagGmm) – Source Gmm to copy
Returns:This FullGmm after update.
copy_from_full(fullgmm:FullGmm)

Copies from given FullGmm

dim() → int

Returns the dimensionality of the Gaussian mean vectors.

from_nmix_dim(nmix:int, dim:int) → FullGmm

Calls C++ function std::unique_ptr<::kaldi::FullGmm> ::kaldi::FullGmm::FullGmm(int, int)

from_other(gmm:FullGmm) → FullGmm

Calls C++ function std::unique_ptr<::kaldi::FullGmm> ::kaldi::FullGmm::FullGmm(::kaldi::FullGmm)

gaussian_selection(data:VectorBase, num_gselect:int) -> (log_like:float, output:list<int>)

Gets gaussian selection information for one frame.

Parameters:
Returns:

Log-likelihood for the input frame and the best num_gselect indices (sorted from best to worst likelihood).

gaussian_selection_preselect(data:VectorBase, preselect:list<int>, num_gselect:int) -> (log_like:float, posteriors:list<int>)

Get gaussian selection information for one frame.

Parameters:
  • data (kaldi.matrix.Vector) – data point
  • preselect (list) – subset of mixture components
  • num_gselect (int) – number of gaussians to select
Returns:

Log-likelihood for the input frame and the best num_gselect indices that were preselected (sorted from best to worst likelihood).

gconsts() → Vector

Returns gconsts

get_component_mean(gauss:int, out:VectorBase)

Gets component mean.

get_covars()[source]
Returns:Component Covariances
get_covars_and_means()[source]
Returns:Component Covariances
get_means() → Matrix

Returns component means.

interpolate(rho:float, source:FullGmm, flags:int=default)

Interpolates this model with other GMM

this <- rho * source + (1 - rho) * this

Parameters:
  • rho (float) – Interpolation weight
  • source (FullGmm) – Source model
  • flags (int) – Interpolation flags
inv_covars()[source]
Returns:Component inverse covariances
log_likelihood(data:VectorBase) → float

Computes the log-likelihood for a data point

Parameters:data (kaldi.matrix.Vector) – data point
log_likelihoods(data:VectorBase) → Vector

Computes the per-component log-likelihoods for a data point

Parameters:data (kaldi.matrix.Vector) – data point
log_likelihoods_preselect(data:VectorBase, indices:list<int>) → Vector

Computes the per-component log-likelihoods of a subset of mixture components.

Parameters:
means_invcovars() → Matrix

Returns means times inverse covariances

merge(target_components:int) → list<int>

Merges components

Parameters:target_components (int) – number of target components
Returns:The order in which components were merged.
merge_preselect(target_components:int, preselect_pairs:list<tuple<int, int>>) → float

Merges components

This version only considers merging pairs in preselect_pairs. :param target_components: number of target components :type target_components: int :param preselect_pairs: preselected pairs :type preselect_pairs: List[Tuple[int, int]]

Returns:Delta likelihood.
num_gauss() → int

Returns the number of mixture components.

perturb(perturb_factor:float)

Perturbs components

Component means are perturbed with a random vector multiplied by the pertrubation factor.

Parameters:perturb_factor (float) – perturbation factor
read(is:istream, binary:bool)

Reads gaussian mixture model from input stream.

remove_component(gauss:int, renorm_weights:bool)

Removes single component from model.

remove_components(gauss:list<int>, renorm_weights:bool)

Removes multiple components from model.

resize(nmix:int, dim:int)

Resizes arrays to this dim. Does not initialize data.

set_inv_covars(v:list<SpMatrix>)

Sets inverse covariances.

set_inv_covars_and_means(invcovars:list<SpMatrix>, means:Matrix)

Updates both means and (inverse) covariances.

Parameters:
  • invcovars (list of SpMatrix) – List of inverse covariances
  • means (kaldi.matrix.Matrix) – matrix of means
set_inv_covars_and_means_inv_covars(invcovars:list<SpMatrix>, means_invcovars:Matrix)

Use this if setting both, in the class’s native format.

Parameters:
  • invcovars (list of SpMatrix) – List of inverse covariances
  • means_invcovars (kaldi.matrix.Matrix) – matrix of means and invcovars
set_means(means)[source]

Sets gmm component means.

set_weights(weights)[source]

Sets gmm mixture weights.

split(target_components:int, perturb_factor:float) → list<int>

Splits components

Parameters:
  • target_components (int) – number of target components
  • perturb_factor (float) – perturbation factor
Returns:

The order in which components were split.

weights() → Vector

Returns mixture weights

write(os:ostream, binary:bool)

Writes gaussian mixture model to output stream.

class kaldi.gmm.FullGmmNormal

CLIF wrapper for ::kaldi::FullGmmNormal

copy_from_full(fullgmm:FullGmm)

Calls C++ function void ::kaldi::FullGmmNormal::CopyFromFullGmm(::kaldi::FullGmm)

copy_to_full(fullgmm:FullGmm, flags:int=default)

Calls C++ function void ::kaldi::FullGmmNormal::CopyToFullGmm(::kaldi::FullGmm *, unsigned short)

means_

C++ ::kaldi::Matrix<double> FullGmmNormal.means_

new_with_other(gmm:FullGmm) → FullGmmNormal

Calls C++ function std::unique_ptr<::kaldi::FullGmmNormal> ::kaldi::FullGmmNormal::FullGmmNormal(::kaldi::FullGmm)

rand(feats:MatrixBase)

Calls C++ function void ::kaldi::FullGmmNormal::Rand(::kaldi::MatrixBase<float> *)

resize(nMix:int, dim:int)

Calls C++ function void ::kaldi::FullGmmNormal::Resize(int, int)

vars_

C++ ::std::vector< ::kaldi::SpMatrix<double> > FullGmmNormal.vars_

weights_

C++ ::kaldi::Vector<double> FullGmmNormal.weights_

class kaldi.gmm.GmmUpdateFlags

An enumeration.

ALL = 15
MEANS = 1
TRANSITIONS = 8
VARIANCES = 2
WEIGHTS = 4
class kaldi.gmm.MapDiagGmmOptions

CLIF wrapper for ::kaldi::MapDiagGmmOptions

mean_tau

C++ ::kaldi::BaseFloat MapDiagGmmOptions.mean_tau

register(opts:OptionsItf)

Calls C++ function void ::kaldi::MapDiagGmmOptions::Register(::kaldi::OptionsItf *)

variance_tau

C++ ::kaldi::BaseFloat MapDiagGmmOptions.variance_tau

weight_tau

C++ ::kaldi::BaseFloat MapDiagGmmOptions.weight_tau

class kaldi.gmm.MleDiagGmmOptions

CLIF wrapper for ::kaldi::MleDiagGmmOptions

min_gaussian_occupancy

C++ ::kaldi::BaseFloat MleDiagGmmOptions.min_gaussian_occupancy

min_gaussian_weight

C++ ::kaldi::BaseFloat MleDiagGmmOptions.min_gaussian_weight

min_variance

C++ double MleDiagGmmOptions.min_variance

register(opts:OptionsItf)

Calls C++ function void ::kaldi::MleDiagGmmOptions::Register(::kaldi::OptionsItf *)

remove_low_count_gaussians

C++ bool MleDiagGmmOptions.remove_low_count_gaussians

variance_floor_vector

C++ ::kaldi::Vector<double> MleDiagGmmOptions.variance_floor_vector

class kaldi.gmm.MleFullGmmOptions

CLIF wrapper for ::kaldi::MleFullGmmOptions

max_condition

C++ ::kaldi::BaseFloat MleFullGmmOptions.max_condition

min_gaussian_occupancy

C++ ::kaldi::BaseFloat MleFullGmmOptions.min_gaussian_occupancy

min_gaussian_weight

C++ ::kaldi::BaseFloat MleFullGmmOptions.min_gaussian_weight

register(opts:OptionsItf)

Calls C++ function void ::kaldi::MleFullGmmOptions::Register(::kaldi::OptionsItf *)

remove_low_count_gaussians

C++ bool MleFullGmmOptions.remove_low_count_gaussians

variance_floor

C++ ::kaldi::BaseFloat MleFullGmmOptions.variance_floor

class kaldi.gmm.SgmmUpdateFlags

An enumeration.

ALL = 255
COVARIANCE_MATRIX = 8
PHONE_PROJECTIONS = 2
PHONE_VECTORS = 1
PHONE_WEIGHT_PROJECTIONS = 4
SPEAKER_PROJECTIONS = 32
SPEAKER_WEIGHT_PROJECTIONS = 128
SUBSTATE_WEIGHTS = 16
TRANSITIONS = 64
class kaldi.gmm.SgmmWriteFlags

An enumeration.

BACKGROUND_GMMS = 8
GLOBAL_PARAMS = 1
NORMALIZERS = 4
STATE_PARAMS = 2
WRITE_ALL = 15
kaldi.gmm.augment_gmm_flags(f:int) → int

Calls C++ function unsigned short ::kaldi::AugmentGmmFlags(unsigned short)

kaldi.gmm.get_split_targets(state_occs:Vector, target_components:int, power:float, min_count:float) → list<int>

Calls C++ function void ::kaldi::GetSplitTargets(::kaldi::Vector<float>, int, float, float, ::std::vector< ::int32>*)

kaldi.gmm.gmm_flags_to_string(gmm_flags:GmmUpdateFlags) → str

Calls C++ function ::std::string ::kaldi::GmmFlagsToString(unsigned short)

kaldi.gmm.mle_full_gmm_update(config:MleFullGmmOptions, fullgmm_acc:AccumFullGmm, flags:int, gmm:FullGmm) -> (obj_change_out:float, count_out:float)

Calls C++ function void ::kaldi::MleFullGmmUpdate(::kaldi::MleFullGmmOptions, ::kaldi::AccumFullGmm, unsigned short, ::kaldi::FullGmm , float, float*)

kaldi.gmm.string_to_gmm_flags(s:str) → GmmUpdateFlags

Calls C++ function unsigned short ::kaldi::StringToGmmFlags(::std::string)

kaldi.gmm.string_to_sgmm_update_flags(s:str) → SgmmUpdateFlags

Calls C++ function unsigned short ::kaldi::StringToSgmmUpdateFlags(::std::string)

kaldi.gmm.string_to_sgmm_write_flags(s:str) → SgmmWriteFlags

Calls C++ function unsigned short ::kaldi::StringToSgmmWriteFlags(::std::string)

kaldi.gmm.am

Functions

cluster_gaussians_to_ubm Calls C++ function
map_am_diag_gmm_update Calls C++ function
mle_am_diag_gmm_update Calls C++ function

Classes

AccumAmDiagGmm CLIF wrapper for ::kaldi::AccumAmDiagGmm
AmDiagGmm CLIF wrapper for ::kaldi::AmDiagGmm
DecodableAmDiagGmm CLIF wrapper for ::kaldi::DecodableAmDiagGmm
DecodableAmDiagGmmScaled CLIF wrapper for ::kaldi::DecodableAmDiagGmmScaled
DecodableAmDiagGmmUnmapped CLIF wrapper for ::kaldi::DecodableAmDiagGmmUnmapped
UbmClusteringOptions CLIF wrapper for ::kaldi::UbmClusteringOptions
class kaldi.gmm.am.AccumAmDiagGmm

CLIF wrapper for ::kaldi::AccumAmDiagGmm

accumulate_for_gaussian(model:AmDiagGmm, data:VectorBase, gmm_index:int, gauss_index:int, weight:float)

Calls C++ function void ::kaldi::AccumAmDiagGmm::AccumulateForGaussian(::kaldi::AmDiagGmm, ::kaldi::VectorBase<float>, int, int, float)

accumulate_for_gmm(model:AmDiagGmm, data:VectorBase, gmm_index:int, weight:float) → float

Calls C++ function float ::kaldi::AccumAmDiagGmm::AccumulateForGmm(::kaldi::AmDiagGmm, ::kaldi::VectorBase<float>, int, float)

accumulate_for_gmm_twofeats(model:AmDiagGmm, data1:VectorBase, data2:VectorBase, gmm_index:int, weight:float) → float

Calls C++ function float ::kaldi::AccumAmDiagGmm::AccumulateForGmmTwofeats(::kaldi::AmDiagGmm, ::kaldi::VectorBase<float>, ::kaldi::VectorBase<float>, int, float)

accumulate_from_posteriors(model:AmDiagGmm, data:VectorBase, gmm_index:int, posteriors:VectorBase)

Calls C++ function void ::kaldi::AccumAmDiagGmm::AccumulateFromPosteriors(::kaldi::AmDiagGmm, ::kaldi::VectorBase<float>, int, ::kaldi::VectorBase<float>)

add(scale:float, other:AccumAmDiagGmm)

Calls C++ function void ::kaldi::AccumAmDiagGmm::Add(float, ::kaldi::AccumAmDiagGmm)

dim() → int

Calls C++ function int ::kaldi::AccumAmDiagGmm::Dim()

get_acc(index:int) → AccumDiagGmm

Calls C++ function ::kaldi::AccumDiagGmm * ::kaldi::AccumAmDiagGmm::GetAccPtr(int)

init(model:AmDiagGmm, flags:int)

Calls C++ function void ::kaldi::AccumAmDiagGmm::Init(::kaldi::AmDiagGmm, unsigned short)

init_with_dim(model:AmDiagGmm, dim:int, flags:int)

Calls C++ function void ::kaldi::AccumAmDiagGmm::Init(::kaldi::AmDiagGmm, int, unsigned short)

num_accs() → int

Calls C++ function int ::kaldi::AccumAmDiagGmm::NumAccs()

read(is:istream, binary:bool, add:bool=default)

Calls C++ function void ::kaldi::AccumAmDiagGmm::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool, bool)

scale(scale:float)

Calls C++ function void ::kaldi::AccumAmDiagGmm::Scale(float)

set_zero(flags:int)

Calls C++ function void ::kaldi::AccumAmDiagGmm::SetZero(unsigned short)

tot_count() → float

Calls C++ function float ::kaldi::AccumAmDiagGmm::TotCount()

tot_log_like() → float

Calls C++ function float ::kaldi::AccumAmDiagGmm::TotLogLike()

tot_stats_count() → float

Calls C++ function float ::kaldi::AccumAmDiagGmm::TotStatsCount()

write(out_stream:ostream, binary:bool)

Calls C++ function void ::kaldi::AccumAmDiagGmm::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.gmm.am.AmDiagGmm

CLIF wrapper for ::kaldi::AmDiagGmm

add_pdf(gmm:DiagGmm)

Calls C++ function void ::kaldi::AmDiagGmm::AddPdf(::kaldi::DiagGmm)

compute_gconsts() → int

Calls C++ function int ::kaldi::AmDiagGmm::ComputeGconsts()

copy_from_am_diag(other:AmDiagGmm)

Calls C++ function void ::kaldi::AmDiagGmm::CopyFromAmDiagGmm(::kaldi::AmDiagGmm)

dim() → int

Calls C++ function int ::kaldi::AmDiagGmm::Dim()

get_gaussian_mean(pdf_index:int, gauss:int, out:VectorBase)

Calls C++ function void ::kaldi::AmDiagGmm::GetGaussianMean(int, int, ::kaldi::VectorBase<float> *)

get_gaussian_variance(pdf_index:int, gauss:int, out:VectorBase)

Calls C++ function void ::kaldi::AmDiagGmm::GetGaussianVariance(int, int, ::kaldi::VectorBase<float> *)

init(proto:DiagGmm, num_pdfs:int)

Calls C++ function void ::kaldi::AmDiagGmm::Init(::kaldi::DiagGmm, int)

log_likelihood(pdf_index:int, data:VectorBase) → float

Calls C++ function float ::kaldi::AmDiagGmm::LogLikelihood(int, ::kaldi::VectorBase<float>)

merge_by_count(state_occs:Vector, target_components:int, power:float, min_count:float)

Calls C++ function void ::kaldi::AmDiagGmm::MergeByCount(::kaldi::Vector<float>, int, float, float)

num_gauss() → int

Calls C++ function int ::kaldi::AmDiagGmm::NumGauss()

num_gauss_in_pdf(pdf_index:int) → int

Calls C++ function int ::kaldi::AmDiagGmm::NumGaussInPdf(int)

num_pdfs() → int

Calls C++ function int ::kaldi::AmDiagGmm::NumPdfs()

read(is:istream, binary:bool)

Calls C++ function void ::kaldi::AmDiagGmm::Read(::std::basic_istream<char, ::std::char_traits<char> >, bool)

set_gaussian_mean(pdf_index:int, gauss:int, in:VectorBase)

Calls C++ function void ::kaldi::AmDiagGmm::SetGaussianMean(int, int, ::kaldi::VectorBase<float>)

split_by_count(state_occs:Vector, target_components:int, perturb_factor:float, power:float, min_count:float)

Calls C++ function void ::kaldi::AmDiagGmm::SplitByCount(::kaldi::Vector<float>, int, float, float, float)

split_pdf(idx:int, target_components:int, perturb_factor:float)

Calls C++ function void ::kaldi::AmDiagGmm::SplitPdf(int, int, float)

write(os:ostream, binary:bool)

Calls C++ function void ::kaldi::AmDiagGmm::Write(::std::basic_ostream<char, ::std::char_traits<char> >, bool)

class kaldi.gmm.am.DecodableAmDiagGmm

CLIF wrapper for ::kaldi::DecodableAmDiagGmm

is_last_frame(frame:int) → bool

Checks if given frame is the last frame.

log_likelihood(frame:int, index:int) → float

Returns the log-likehood of the given index for the given frame.

num_frames_ready() → int

Returns number of frames ready for decoding.

num_indices() → int

Returns number of indices.

trans_model() → TransitionModel

Returns the transition model.

class kaldi.gmm.am.DecodableAmDiagGmmScaled

CLIF wrapper for ::kaldi::DecodableAmDiagGmmScaled

is_last_frame(frame:int) → bool

Checks if given frame is the last frame.

log_likelihood(frame:int, index:int) → float

Returns the log-likehood of the given index for the given frame.

num_frames_ready() → int

Returns number of frames ready for decoding.

num_indices() → int

Returns number of indices.

own_feats(am:AmDiagGmm, tm:TransitionModel, scale:float, log_sum_exp_prune:float, feats:Matrix) → DecodableAmDiagGmmScaled

Calls C++ function std::unique_ptr<::kaldi::DecodableAmDiagGmmScaled> ::kaldi::DecodableAmDiagGmmScaled::DecodableAmDiagGmmScaled(::kaldi::AmDiagGmm, ::kaldi::TransitionModel, float, float, ::kaldi::Matrix<float> *)

trans_model() → TransitionModel

Returns the transition model.

class kaldi.gmm.am.DecodableAmDiagGmmUnmapped

CLIF wrapper for ::kaldi::DecodableAmDiagGmmUnmapped

is_last_frame(frame:int) → bool

Checks if given frame is the last frame.

log_likelihood(frame:int, index:int) → float

Returns the log-likehood of the given index for the given frame.

num_frames_ready() → int

Returns number of frames ready for decoding.

num_indices() → int

Returns number of indices.

class kaldi.gmm.am.UbmClusteringOptions

CLIF wrapper for ::kaldi::UbmClusteringOptions

check()

Calls C++ function void ::kaldi::UbmClusteringOptions::Check()

cluster_varfloor

C++ ::kaldi::BaseFloat UbmClusteringOptions.cluster_varfloor

intermediate_num_gauss

C++ ::int32 UbmClusteringOptions.intermediate_num_gauss

max_am_gauss

C++ ::int32 UbmClusteringOptions.max_am_gauss

reduce_state_factor

C++ ::kaldi::BaseFloat UbmClusteringOptions.reduce_state_factor

register(opts:OptionsItf)

Calls C++ function void ::kaldi::UbmClusteringOptions::Register(::kaldi::OptionsItf *)

ubm_num_gauss

C++ ::int32 UbmClusteringOptions.ubm_num_gauss

kaldi.gmm.am.cluster_gaussians_to_ubm(am:AmDiagGmm, state_occs:Vector, opts:UbmClusteringOptions, ubm_out:DiagGmm)

Calls C++ function void ::kaldi::ClusterGaussiansToUbm(::kaldi::AmDiagGmm, ::kaldi::Vector<float>, ::kaldi::UbmClusteringOptions, ::kaldi::DiagGmm *)

kaldi.gmm.am.map_am_diag_gmm_update(config:MapDiagGmmOptions, diag_gmm_acc:AccumAmDiagGmm, flags:int, am_gmm:AmDiagGmm) -> (obj_change_out:float, count_out:float)

Calls C++ function void ::kaldi::MapAmDiagGmmUpdate(::kaldi::MapDiagGmmOptions, ::kaldi::AccumAmDiagGmm, unsigned short, ::kaldi::AmDiagGmm , float, float*)

kaldi.gmm.am.mle_am_diag_gmm_update(config:MleDiagGmmOptions, diag_gmm_acc:AccumAmDiagGmm, flags:int, am_gmm:AmDiagGmm) -> (obj_change_out:float, count_out:float)

Calls C++ function void ::kaldi::MleAmDiagGmmUpdate(::kaldi::MleDiagGmmOptions, ::kaldi::AccumAmDiagGmm, unsigned short, ::kaldi::AmDiagGmm , float, float*)